# load load('antidepORsplineFINAL') library(coda) library(MASS) library(R2jags) # binomial model: antidepressant m <-as.mcmc(doseresORsplineBinBiv) # for beta1.pooled , beta2.pooled and tau, the following are some coda plots and measures of them #******* # Plots #******* par(las=1) # 1.density sim.beta1 <- doseresORsplineBinBiv$BUGSoutput$sims.array[,,'beta1.pooled'] sim.beta2 <- doseresORsplineBinBiv$BUGSoutput$sims.array[,,'beta2.pooled'] sim.tau <- doseresORsplineBinBiv$BUGSoutput$sims.array[,,'tau'] sim.rho <- doseresORsplineBinBiv$BUGSoutput$sims.array[,,'rho'] # beta1 truehist(sim.beta1) lines(density(sim.beta1),lty=1,lwd=3,col=2) # beta2 truehist(sim.beta2) lines(density(sim.beta2),lty=1,lwd=3,col=2) # tau truehist(sim.tau) lines(density(sim.tau),lty=1,lwd=3,col=2) # rho truehist(sim.rho) lines(density(sim.rho),lty=1,lwd=3,col=2) # 2.traceplots coda::traceplot(m[,'beta1.pooled',drop(FALSE)]) coda::traceplot(m[,'beta2.pooled',drop(FALSE)]) coda::traceplot(m[,'tau',drop(FALSE)]) coda::traceplot(m[,'rho',drop(FALSE)]) # 3.geweke plot geweke.plot(m[,'beta1.pooled',drop(FALSE)]) geweke.plot(m[,'beta2.pooled',drop(FALSE)]) geweke.plot(m[,'tau',drop(FALSE)]) geweke.plot(m[,'rho',drop(FALSE)]) # 4.gelman plot gelman.plot(m[,'beta1.pooled',drop(FALSE)]) gelman.plot(m[,'beta2.pooled',drop(FALSE)]) gelman.plot(m[,'tau',drop(FALSE)]) gelman.plot(m[,'rho',drop(FALSE)]) #******* # statistics measures #******* # 1.gelman reduction factor R_hat gelman.diag(m[,'beta1.pooled',drop(FALSE)],autoburnin = TRUE) gelman.diag(m[,'beta2.pooled',drop(FALSE)],autoburnin = TRUE) gelman.diag(m[,'tau',drop(FALSE)],autoburnin = TRUE) gelman.diag(m[,'rho',drop(FALSE)],autoburnin = TRUE) # 2.effective size effectiveSize(m[,'beta1.pooled',drop(FALSE)]) effectiveSize(m[,'beta2.pooled',drop(FALSE)]) effectiveSize(m[,'tau',drop(FALSE)]) effectiveSize(m[,'rho',drop(FALSE)]) # 3.Raftery diagnosis measure raftery.diag(m[,'beta1.pooled',drop(FALSE)]) raftery.diag(m[,'beta2.pooled',drop(FALSE)]) raftery.diag(m[,'tau',drop(FALSE)]) raftery.diag(m[,'rho',drop(FALSE)]) # 4. Heidel diagnosis heidel.diag(m[,'beta1.pooled',drop(FALSE)]) heidel.diag(m[,'beta2.pooled',drop(FALSE)]) heidel.diag(m[,'tau',drop(FALSE)]) heidel.diag(m[,'rho',drop(FALSE)])
# normal model: antidepressant m <-as.mcmc(doseresORsplineNorBiv) # for beta1.pooled , beta2.pooled and tau, the following are some coda plots and measures of them #******* # Plots #******* par(las=1) # 1.density sim.beta1 <- doseresORsplineNorBiv$BUGSoutput$sims.array[,,'beta1.pooled'] sim.beta2 <- doseresORsplineNorBiv$BUGSoutput$sims.array[,,'beta2.pooled'] sim.tau <- doseresORsplineNorBiv$BUGSoutput$sims.array[,,'tau'] sim.rho <- doseresORsplineNorBiv$BUGSoutput$sims.array[,,'rho'] # beta1 truehist(sim.beta1) lines(density(sim.beta1),lty=1,lwd=3,col=2) # beta2 truehist(sim.beta2) lines(density(sim.beta2),lty=1,lwd=3,col=2) # tau truehist(sim.tau) lines(density(sim.tau),lty=1,lwd=3,col=2) # rho truehist(sim.rho) lines(density(sim.rho),lty=1,lwd=3,col=2) # 2.traceplots coda::traceplot(m[,'beta1.pooled',drop(FALSE)]) coda::traceplot(m[,'beta2.pooled',drop(FALSE)]) coda::traceplot(m[,'tau',drop(FALSE)]) coda::traceplot(m[,'rho',drop(FALSE)]) # 3.geweke plot geweke.plot(m[,'beta1.pooled',drop(FALSE)]) geweke.plot(m[,'beta2.pooled',drop(FALSE)]) geweke.plot(m[,'tau',drop(FALSE)]) geweke.plot(m[,'rho',drop(FALSE)]) # 4.gelman plot gelman.plot(m[,'beta1.pooled',drop(FALSE)]) gelman.plot(m[,'beta2.pooled',drop(FALSE)]) gelman.plot(m[,'tau',drop(FALSE)]) gelman.plot(m[,'rho',drop(FALSE)]) #******* # statistics measures #******* # 1.gelman reduction factor R_hat gelman.diag(m[,'beta1.pooled',drop(FALSE)],autoburnin = TRUE) gelman.diag(m[,'beta2.pooled',drop(FALSE)],autoburnin = TRUE) gelman.diag(m[,'tau',drop(FALSE)],autoburnin = TRUE) gelman.diag(m[,'rho',drop(FALSE)],autoburnin = TRUE) # 2.effective size effectiveSize(m[,'beta1.pooled',drop(FALSE)]) effectiveSize(m[,'beta2.pooled',drop(FALSE)]) effectiveSize(m[,'tau',drop(FALSE)]) effectiveSize(m[,'rho',drop(FALSE)]) # 3.Raftery diagnosis measure raftery.diag(m[,'beta1.pooled',drop(FALSE)]) raftery.diag(m[,'beta2.pooled',drop(FALSE)]) raftery.diag(m[,'tau',drop(FALSE)]) raftery.diag(m[,'rho',drop(FALSE)]) # 4. Heidel diagnosis heidel.diag(m[,'beta1.pooled',drop(FALSE)]) heidel.diag(m[,'beta2.pooled',drop(FALSE)]) heidel.diag(m[,'tau',drop(FALSE)]) heidel.diag(m[,'rho',drop(FALSE)])
# normal model: antidepressant m <-as.mcmc(doseresORsplineBindrugclusterBiv) # for beta1.pooled , beta2.pooled and tau, the following are some coda plots and measures of them #******* # Plots #******* par(las=1) # 1.density sim.beta1 <- doseresORsplineBindrugclusterBiv$BUGSoutput$sims.array[,,'b1'] sim.beta2 <- doseresORsplineBindrugclusterBiv$BUGSoutput$sims.array[,,'b2'] sim.tau.with <- doseresORsplineBindrugclusterBiv$BUGSoutput$sims.array[,,'tau.with'] sim.tau.betw <- doseresORsplineBindrugclusterBiv$BUGSoutput$sims.array[,,'tau.betw'] sim.rho.with <- doseresORsplineBindrugclusterBiv$BUGSoutput$sims.array[,,'rho.with'] sim.rho.betw <- doseresORsplineBindrugclusterBiv$BUGSoutput$sims.array[,,'rho.betw'] truehist(sim.beta1) lines(density(sim.beta1),lty=1,lwd=3,col=2) truehist(sim.beta2) lines(density(sim.beta2),lty=1,lwd=3,col=2) truehist(sim.tau.with) lines(density(sim.tau.with),lty=1,lwd=3,col=2) truehist(sim.tau.betw) lines(density(sim.tau.betw),lty=1,lwd=3,col=2) truehist(sim.rho.with) lines(density(sim.rho.with),lty=1,lwd=3,col=2) truehist(sim.rho.betw) lines(density(sim.rho.betw),lty=1,lwd=3,col=2) # 2.traceplots coda::traceplot(m[,'b1',drop(FALSE)]) coda::traceplot(m[,'b2',drop(FALSE)]) coda::traceplot(m[,'tau.with',drop(FALSE)]) coda::traceplot(m[,'tau.betw',drop(FALSE)]) coda::traceplot(m[,'rho.with',drop(FALSE)]) coda::traceplot(m[,'rho.betw',drop(FALSE)]) # 3.geweke plot coda::geweke.plot(m[,'b1',drop(FALSE)]) coda::geweke.plot(m[,'b2',drop(FALSE)]) coda::geweke.plot(m[,'tau.with',drop(FALSE)]) coda::geweke.plot(m[,'tau.betw',drop(FALSE)]) coda::geweke.plot(m[,'rho.with',drop(FALSE)]) coda::geweke.plot(m[,'rho.betw',drop(FALSE)]) # 4.gelman plot coda::gelman.plot(m[,'b1',drop(FALSE)]) coda::gelman.plot(m[,'b2',drop(FALSE)]) coda::gelman.plot(m[,'tau.with',drop(FALSE)]) coda::gelman.plot(m[,'tau.betw',drop(FALSE)]) coda::gelman.plot(m[,'rho.with',drop(FALSE)]) coda::gelman.plot(m[,'rho.betw',drop(FALSE)]) #******* # statistics measures #******* # 1.gelman reduction factor R_hat coda::gelman.diag(m[,'b1',drop(FALSE)],autoburnin = TRUE) coda::gelman.diag(m[,'b2',drop(FALSE)],autoburnin = TRUE) coda::gelman.diag(m[,'tau.with',drop(FALSE)]) coda::gelman.diag(m[,'tau.betw',drop(FALSE)]) coda::gelman.diag(m[,'rho.with',drop(FALSE)]) coda::gelman.diag(m[,'rho.betw',drop(FALSE)]) # 2.effective size coda::effectiveSize(m[,'b1',drop(FALSE)]) coda::effectiveSize(m[,'b2',drop(FALSE)]) coda::effectiveSize(m[,'tau.with',drop(FALSE)]) coda::effectiveSize(m[,'tau.betw',drop(FALSE)]) coda::effectiveSize(m[,'rho.with',drop(FALSE)]) coda::effectiveSize(m[,'rho.betw',drop(FALSE)]) # 3.Raftery diagnosis measure coda::raftery.diag(m[,'b1',drop(FALSE)]) coda::raftery.diag(m[,'b2',drop(FALSE)]) coda::raftery.diag(m[,'tau.with',drop(FALSE)]) coda::raftery.diag(m[,'tau.betw',drop(FALSE)]) coda::raftery.diag(m[,'rho.with',drop(FALSE)]) coda::raftery.diag(m[,'rho.betw',drop(FALSE)]) # 4. Heidel diagnosis coda::heidel.diag(m[,'b1',drop(FALSE)]) coda::heidel.diag(m[,'b2',drop(FALSE)]) coda::heidel.diag(m[,'tau.with',drop(FALSE)]) coda::heidel.diag(m[,'tau.betw',drop(FALSE)]) coda::heidel.diag(m[,'rho.with',drop(FALSE)]) coda::heidel.diag(m[,'rho.betw',drop(FALSE)])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.